
 6:38 PM 22/09/2012 Page 1

TEST GENERATION FOR CONCURRENT PROGRAMS MODELED BY

COMMUNICATING NONDETERMINISTIC FINITE STATE MACHINES1

Gang Luo, Gregor v. Bochmann and Anindya Das

Departement d'IRO, Universite de Montreal,

C.P. 6128,Succ.A, Montreal, P.Q., H3C 3J7, Canada

e-mail:luo@iro.umontreal.ca

Fax: (514) 343-5834

ABSTRACT We present a method of generating test cases for concurrent programs. The

specifications of concurrent programs are modeled by a set of communicating nondeterministic

finite state machines (CNFSMs), where the CNFSM model is a simplified model derived from

CCITT SDL. A conformance relation, called trace-equivalence, is defined under this model,

which serves as a guide to test generation. A test generation method for a single NFSM is

developed, which is generalized from the W-method. For a set of CNFSMs, the test cases are

generated in the following manner: A set of CNFSMs are first transformed into a single NFSM by

reachability analysis; then the test cases are generated from the resulting NFSM by using the

method for a single NFSM.

KEYWORDS: CCITT SDL, concurrent programs, finite state machines, nondeterministic finite

state machines , protocol conformance testing, protocol engineering, and software testing.

1 This work was supported by the IDACOM-NSERC-CWARC Industrial Research Chair on Communication

Protocols at the University of Montreal (Canada).

 6:38 PM 22/09/2012 Page 2

1. INTRODUCTION

Concurrency and nondeterminism are two important features of formal specification languages for

communication software, in particular, communication protocols. All the three major specification

languages for communication software, LOTOS [Bolo87], ESTELLE [Budk87] and SDL [Beli89]

support the description of concurrency and nondeterminism -- (SDL will support

nondeterminism [SDL91] in the near future). However, concurrency raises a challenge in

software testing. A set of deterministic finite state machines , communicating with each other by

input queues and channels as described in SDL [Beli89], may have nondeterministic behavior.

Furthermore, in general, they cannot be modeled as a global finite state machine which preserves

the same relationship between input and output sequences. Several heuristic approaches for

concurrent program testing, based on extended finite state machines [Luo89b, Kaln91, Arak91],

have been reported, although they do not provide an analysis of the corresponding fault coverage.

But these approaches did not address the issue of nondeterminism.

Some work on test generation from nondeterministic models has been done in the context of basic

LOTOS [Brin88, Brin89] and labeled transition systems with a finite number of states [Fuji91,

Fuji91b]. However, these methods are not for testing NFSMs (Nondeterministic Finite State

Machines) where every transition of NFSMs is associated with an input/output pair. A method to

compare two NFSMs based on IO trace inclusion has been given in [Cern92] under the condition

that the internal structures of both NFSMs are available. It, however, is not suitable for test

generation for conformance testing since in this context, implementations are assumed to be black-

boxes. [Luo89] presented a method of generating test cases from NFSMs; but this method is not

guided by a well-defined conformance relation and has very limited fault detection power.

We present in this paper test generation methods for a single NFSM and for a system of CNFSMs

(Communicating NFSMs). The motivation of our work is test generation based on SDL

 6:38 PM 22/09/2012 Page 3

specifications [SDL91]. By neglecting interaction parameters, a set of SDL processes can be

abstracted to a set of CNFSMs. Test cases are then developed from these CNFSMs.

We first define, in Section 2, NFSMs, and related notations which are similar to those for labeled

transition systems [Brin88, Brin89, Fuji91, Fuji91b]. Then, an abstract testing framework for

NFSMs is presented including a conformance relation, fault model and test run observation. The

conformance relation between implementations and specifications , which is based on I/O traces, is

given in the context of the black-box-testing strategy in which implementations are viewed as

black boxes.

Guided by the given conformance relation, we present, in Section 3, a method for generating test

cases from NFSMs. Our method is based on extending the state identification approach in the area

of test generation for deterministic FSMs (Finite State Machine) [Chow78, Sabn85, Fuji91c] to

NFSMs. We first transform a given NFSM with internal actions to a trace-equivalent NFSM

without internal actions. We then transform the NFSM to an equivalent NFSM which has a lower

degree of nondeterminism. The NFSM obtained by the transformation is deterministic in the sense

that a state and an input/output pair uniquely determine the next state, while a state and an input

alone does not, in general, determine a unique next state and an output. Test cases are generated

from the resulting NFSMs by an approach similar to the W-method [Chow78].

In the Section 4 we consider a system of several CNFSMs. We first show that such a system, in

general, cannot be modeled as a global finite state machine, and that even a set of deterministic

FSMs may still contain nondeterminism. We then give two test generation methods for a system

of CNFSMs, one of which is based on a restriction of the channel and queue lengths and the other

on an assumption for the speed at which inputs are sent by the environments. We finally discuss

the detection of faults related to queues and channels.

 6:38 PM 22/09/2012 Page 4

We conclude by discussing the application of the method to generate test cases from SDL

specifications.

2. NOTATIONS AND ABSTRACT TESTING FRAMEWORK

We first give in this section the definition of a single NFSM. We then present a conformance

relation for NFSMs, inspired by the work of defining conformance relations for labeled transition

systems [Brin88, Brin89]. The relation is based on the black-box testing strategy where

implementations are assumed to be black boxes. We next give a fault model for NFSMs. We

finally formalize the concept of "test run observation", which provides a means for the formal

presentation of our testing method. We also describe a complete-testing assumption without

which no full fault coverage can be achieved for nondeterministic models.

2.1 Single NFSM

We first define in the following a single NFSM, which can be viewed as a single simplified SDL

process without parameters. Spontaneous transitions, which are internal actions and cause

nondeterminism, are included in our model. We first give a formal definition of NFSMs which is

similar to the one given in [Star72]. We then define notations for NFSMs by using an approach

similar to those for labeled transition systems [Brin88, Brin89, Fuji91, Fuji91b].

DEFINITION Nondeterministic Finite State Machine :

A Nondeterministic Finite State Machine (NFSM) is defined as a 5-tuple (St, Li, Lo, h , s0)

where :

(1) St is a finite set of states.

(2) Li is a finite set of inputs.

(3) Lo is a finite set of outputs.

 6:38 PM 22/09/2012 Page 5

(4) h is a function.

 h : d --> (powerset(St  (Lo  {})) - {})

where (a) St 6Li ⁄d and d⁄St 6(Li  {ii}); (b)  represents an empty output; and (c)  denotes the

empty set. Let P, P'�St , a�Li  {ii} and b�Lo  {}. We write P-a/b->P' to denote (P', b)�h

(P,a); P-a/b->P' is also called a transition from P to P' with label a /b.

(5) s0 is the initial state which is in St.

(6) a reset input r is assumed such that upon receiving r in any state the NFSM will return to

the initial state.

[End of definition].

In the above definition, P-ii/->P' represents an internal, non-observable transition. Furthermore,

according to the above definition, the NFSM is completely defined, which means that, for every

a�Li and every state, the NFSM has at least one transition with the input a. We note, therefore,

that inputs are never blocked, as would be the case for labeled transition systems.

A NFSM can be represented by a directed graph in which the nodes are the states and the directed

edges are transitions linking the states. Figure 1 shows an example of a NFSM.

S1

S2 S3

Figure 1. An example of a NFSM

b/

a/a/

b/e
a/d

a/ea/d

b/e

Li = { a, b }

Lo = { d, e }

 6:38 PM 22/09/2012 Page 6

For a NFSM, if there are no internal actions, and if no two outgoing transitions from the same

state have the same input, then the NFSM is deterministic; and we denote it an FSM.

For the convenience of the presentation, we also introduce in Table 1 several notations.

 Table 1. Notation for NFSMs

 notation meaning
 Li', Li  {ii}

 Lo', Lo  {}
 i i = ii/ , i denotes an internal action

 L (Li' 6 Lo')  {i}, a set of observable actions

 L' L  {i}

 L* set of sequences over L; x denotes such sequences
 P-u1...un-> Q For P, Q �St, u1,..., un� L,  Pk�St (P=P0-u1->P1...-un->Pn=Q)

 where 0kn
 P-u1...un-> For P �St, u1,..., un� L,  Q�St (P-u1...-un->Q)

 P==>Q P-in->Q (n1) or P=Q (note: in means n times i)
 P=a/b=>Q For P, Q �St, a/b � L,  P1, P2�St (P==>P1-a/b->P2==>Q)

 P=u1...un=>Q For P, Q �St, u1,...,un�L, Pk(P=P0=u1=>P1...=un=>Pn=Q) where 0kn

 P=x=>Q For P, Q �St, x� L*, P=u1...un=>Q with x=u1...un

 P=x=> For P�St, x� L*,  Q �St (P=x=>Q)

 P/=x=> not (P=x=>)

In the following we often make no difference between a state within a given NFSM and a NFSM.

In fact, a state S within a NFSM over a given set of actions L’ may be considered to represent a

transition system, also denoted by S, which has S as initial state and contains all those states and

transitions which are reachable from this initial state. A given NFSM may actually consist of

several unconnected components, for instance, such as a specification S and an implementation I.

2.2. Conformance relations for NFSMs

 6:38 PM 22/09/2012 Page 7

In black-box-testing, the only way to distinguish an implementation from its specification is to

check the difference between the output sequences caused by the same input sequences. Based on

input and output sequences (i.e. i/o traces), we give the following conformance relations.

DEFINITION Trace preorder :

The trace preorder relation between two states I and S, written

 I <=trace S, holds iff  x �L* :

 if I =x=> then S=x=>

[End of definition].

It is easy to prove that the above relation is reflective and transitive. Therefore, the relation is a

preorder.

DEFINITION Trace equivalence :

The trace equivalence relation between two states I and S, written

 I =trace S, holds iff I <=trace S and S <=trace I

[End of definition].

Similarly, the trace-equivalence relation is an equivalence relation since it is also symmetric. This

relation serves as a guide for test generation for NFSM specifications. For an FSM (deterministic

finite state machine), the above relation becomes the ordinary equivalence relation as defined in

[Chow78]. Since for NFSMs there is no blocking mechanism , as in the case of labeled transition

systems, the trace-equivalence relation is the most discriminating conformance relation under the

black-box testing assumption.

2.3. Fault model for a single NFSM

 6:38 PM 22/09/2012 Page 8

Like other state-machine based test generation, fault models, together with the above-defined

trace-equivalence relation, serves as a guide to test generation and a basis for test coverage

analysis. [Boch91] gave a general survey on a variety of fault models in testing. We now give a

fault model for NFSMs. Let S and I be two NFSMs, with S being a specification and I its

implementation. We assume that they have the same St, Li and Lo. The fault types are defined as

follows:

(1) Single output fault: We say that a transition in I has a single output fault if,

(a) not(S=traceI);

(b) there exists S' such that S=traceS' and S' can be obtained from I by changing the output of the

above transition.

(2) Single transfer fault: We say that a transition in I has a single transfer fault if,

(a) not(S=traceI);

(b)there exists S' such that S=traceS' and S' can be obtained from I by changing the ending state

of the above transition.

(3) Single extra (missing) transition fault: We say that I has a single extra (missing) transition

fault if,

(a) not(S=traceI);

(b) there exists S' such that S=traceS' and S' can be obtained from I by eliminating (adding) a

transition from (to) I.

(4) Multiple faults: We say that I has multiple faults if,

(a) not(S=traceI);

(b)there exists S' such that S=traceS' and S' can be obtained from I by changing the outputs of

certain transitions, changing the ending states of certain transitions, and eliminating and

adding transitions on I.

 6:38 PM 22/09/2012 Page 9

In Section 4, we will discuss additional faults concerning the queues and channels in a system of

CNFSMs.

2.4. Test run observation

We first define the concepts of test cases and test suites, which are needed for formalizing the

concept of test run observation.

DEFINITION Test case and test suite :

For a given NFSM, t is a test case if t �L* . A test suite is a set of test cases.

[End of definition].

During testing, after test sequences are applied to the given implementation, the resulting outputs

are observed. The following definition formalizes the observation caused by applying a test case t

to a given state P of a NFSM.

DEFINITION Observation of test runs :

For a given NFSM, Observation of test runs is a function O: St test cases --> {T, F} such that

:

 O(P@t) = T iff P=t => ; otherwise, (P@t) = F.

[End of definition].

Remember that t is a sequence of input/output pairs. Suppose that ti is the sub-sequence of t ,

obtained by deleting all outputs in t; therefore, ti is an input sequence. O(P@t) = T means that

when the input sequence ti is applied to the state P, the sequence of input/output pairs t may

occur.

 6:38 PM 22/09/2012 Page 10

Complete-testing assumption: For a test case t and a given NFSM I (an implementation; I also

represents the initial state of the implementation), suppose that O(I@t) = T holds and that ti is

the sub-sequence of t , obtained by deleting all outputs in t. We assume that a positive integer N

can be found such that if the input sequence ti is applied to I N times, the sequence of

input/output pairs t will occur at least once.

For a given test case (an I/O sequence) t, this assumption states that it is possible, by applying the

input sequence of the test case a finite of number of times, to exercise all possible execution paths

of the implementation.

In practice, complete-testing can be achieved by obtaining an implementation with fairness by

adopting some techniques such as those given in [Wu 91]. For a given input sequence, the

probability that not all possible corresponding execution paths are exercised at least once, may be

reduced to close to zero by applying the input sequence a sufficiently large number of times.

3. TEST GENERATION FOR A SINGLE NFSM

We present in this section a method of generating test cases for a single NFSM. Our method is

based on state set identification, an approach similar to the state identification in the area of test

generation for FSMs [Chow78, Sabn85, Fuji91c]. However, our method needs to cope with

nondeterminism too. In a deterministic model, one input sequence can uniquely determine one

output sequence, which is not always true in a nondeterministic model.

In our method, a NFSM with internal actions is first transformed to a trace-equivalent NFSM

without internal actions. Then, the resulting NFSM is transformed to a so-called ONFSM

(observably nondeterministic FSM) which is trace-equivalent to the original NFSM. The

 6:38 PM 22/09/2012 Page 11

corresponding ONFSM usually has a lower degree of nondeterminism than the original NFSM. In

the corresponding ONFSM, each state corresponds to a set of states of the original NFSM. Next,

based on the ONFSM, a set of I/O sequences, a so-called characterization set, is derived for state

set identification. Finally, a test generation method is presented in terms of I/O sequences,

ONFSMs, and characterization sets.

We first introduce in Section 3.1 two concepts: ONFSM and a so-called characterization set, in

order to present the test generation method. We then consider test generation for ONFSMs

without internal actions in Section 3.2. We next give an algorithm for transforming a NFSM to a

trace-equivalent ONFSM in Section 3.3. An algorithm of transforming a NFSM with internal

actions to a trace-equivalent NFSM without internal actions is given in Section 3.4.

Incorporating the above two algorithms, the above test generation method can generate test cases

for any NFSM.

3.1. ONFSM and characterization set

We first define ONFSM (Observably nondeterministic FSMs), a concept originally described in

[Cern92] which represents a restricted form of nondeterminism.

DEFINITION Observably-nondeterministic NFSMs :

A NFSM is said to be observably-nondeterministic if the following two statements hold:

(1) for every state S in St, and every input/output pair a/b in L, there is at most one transition; that

is, "S-a/b->S1 and S-a/b->S2" implies "S1=S2".

(2) the NFSM does not contain any internal action.

[End of definition].

 6:38 PM 22/09/2012 Page 12

ONFSMs are a subclass of NFSMs. They are called observably-nondeterministic since a state and

an input/output pair can uniquely determine the next state. However an ONFSM may still be

nondeterministic in the sense that given a state and an input, one cannot determine a unique next

state and a unique output.

For example, a trace-equivalent ONFSM for the NFSM in Figure 1 is shown in Figure 2.

S2

S2, S3

S2, S1

S1

b/

S3 a/

a/

a/

a/

b/e

b/e

b/e

b/e

a/d

a/d

a/e

Figure 2. The trace-equivalent minimal ONFSM of the NFSM

a/e Li = { a, b }

Lo = { d, e }

b/
W = { a/d, b/e.b/e, b/e.a/d }

In order to present our test generation algorithm, we define in the following the concepts of

characterization set and the minimality of NFSMs.

DEFINITION: Characterization set :

 For an ONFSM, with the state set St, a Characterization set is a test suite W such that :

  P1, P2 � St : t �W , O(P1@t) � O(P2@t)

[End of definition].

DEFINITION: Minimality of ONFSMs :

An ONFSM is minimal if no two states are trace-equivalent.

 6:38 PM 22/09/2012 Page 13

[End of definition].

According to the above definitions, if a given ONFSM is minimal, there exists a characterization

set for it. The ONFSM shown in Figure 2 is minimal, the corresponding W set is also shown in

Figure 2. The following table shows the results of the application of the W set to every state of

the ONFSM. The first row lists all the states, and the first column lists all input/output sequences

of the W set. For a input/output sequence and a state, their cross in the table being "accepted"

means that the input/output sequence will be observed if the corresponding input sequence is sent

repeatly under the complete testing assumption. Note that "S2,S3" is a name of a single state, and

so is "S2,S1".

 Table 2. The results of the application of the W set { a/d, b/e.b/e, b/e.a/d}

 "S1" "S2" "S3" "S2,S3" "S2,S1"

 a/d accepted not accepted not accepted not accepted accepted

 b/e.b/e not accepted not accepted accepted accepted not accepted

 b/e.a/d not accepted accepted not accepted accepted accepted

The W set (Characterization set) is used to determine which state the given ONFSM is in. Take

the ONFSM of Figure 2 for example. Assume that the machine is first led to the same unknown

state, say Q, before each application of the W set. We want to use the W set to determine which

state is the state Q. We first derive the set of the three input sequences {a, b.b, b.c} from the W

set of Figure 2 by neglecting all outputs. We then apply each input sequence in {a, b.b, b.c} to

the state Q many times (up to N times according the complete testing assumption). If, as a result,

the input/output sequences b/e.b/e and b/e.a/d are observed and input/output sequence a/d is not

observed, we know that the Q is the state "S1, S2" under the complete testing assumption.

 6:38 PM 22/09/2012 Page 14

Although we do not give any algorithm to generate a characterization set from a given ONFSM,

one can easily develop such an algorithm by using an approach similar to the generation of the W

set in the W-method [Chow78].

3.2. Test generation

We first present the following notation for describing the concatenation of test cases.

DEFINITION: Concatenation of sets of test cases :

Assuming that V1 and V2 are two sets of test cases, the concatenation , written ".", is defined as

follows:

 V1.V2 = { t1.t2 | t1 �V1, t2 �V2 } where t1.t2 is the concatenation of the test case t1 with

t2.

 We write Vn = V. Vn-1 for n > 1 and V1 = V.

[End of definition].

We give in the following the test generation algorithm. This algorithm requires that the user

previously estimates an upper bound on the number of states which may be contained in the

trace-equivalent minimal ONFSM for the given NFSM implementation.

ALGORITHM 1: Test generation .

Input : A specification S in the form of a minimal ONFSM, and the upper bound m on the

number of states which may be contained in the trace-equivalent minimal ONFSM for the

given NFSM implementation.

Output : a test suite �

Step 1: Construct a characterization set W from S.

Step 2: Construct a set of test cases P from S such that:

 6:38 PM 22/09/2012 Page 15

 for each transition Si -u-> Sj in S,

x.u � P such that there exists a path from the initial state S0 to Si where x is the

sequence of labels of the edges along this path.

Step 3: Let the number of states in S be n (n m). Construct a test suite � such that:

 � = { r }.(P P.L).Z

 where r is the reset input, and Z = ({} L  L2  Lm-nW

[End of algorithm].

The above algorithm may be considered a generalization to the W-method [Chow78] since it has a

similar form.

For example, we generate in the following a test suite for the ONFSM of Figure 2. The ONFSM

has 5 states. We first derive from the ONFSM in Figure 2 the following characterization set W :

 W = { a/d, b/e.b/e, b/e.a/d }.

We then derive the set P as follows:

 P = { b/, a/d, a/e, a/d.b/e, a/d.a/, a/e.b/e, a/e.a/, a/d.b/e.b/, a/d.b/e.a/d, a/d.b/e.b/e,

 a/d.b/e.a/, a/d.b/e.a/e, a/e.b/e.b/e, a/e.b/e.a/

Finally, assuming that the implementation is a minimal ONFSM and will not have more than 5

states, the test suite is the following:

 � = { r }.(P P.L).Z

 = { r }.P.({} L).Z

 = { r }.{ b/, a/d, a/e, a/d.b/e, a/d.a/, a/e.b/e, a/e.a/, a/d.b/e.b/, a/d.b/e.a/d, a/d.b/e.b/e,

 a/d.b/e.a/, a/d.b/e.a/e, a/e.b/e.b/e, a/e.b/e.a/.({} L).{ a/d, b/e.b/e, b/e.a/d }.

We use the set (P P.L).Z, instead of only using the set P .Z, in the above algorithm for the

following reasons: (i) the set P.Z is used to check whether all transitions of the specification exist

and have the correct next states, and (ii) the set P.L.Z is used to ensure that a state in a given

 6:38 PM 22/09/2012 Page 16

implementation has no extra transitions than those specified in the specification. For example,

Figure 3 shows a faulty implementation of the specification shown in Figure 2, which has an extra

transition fault (see the transition of bold line in Figure 3). For the sets W and P given above, it is

easy to see from Figure 3 that this fault is not necessarily detected if � = { r }. P .Z .

Figure 3. The faulty implementation

a/c

S2

S2, S3

S2, S1

S1

b/

S3 a/

a/

a/

a/

b/e

b/e

b/e

b/e

a/d

a/d

a/e

a/e

b/

If the ONFSM to be tested is in fact an FSM, the set (P P.L).Z in the above algorithm can be

replaced by a smaller the set P.Z; then the above method is the same as the W-method of

[Chow78]. Furthermore, this method can be easily modified to a method like the Wp-method

[Fuji91c] or the UIO method [Sabn85], obtaining a smaller test suite with the same fault detection

power.

THEOREM 1: (Test generation)

Consider a specification S in the form of a minimal ONFSM, and a NFSM I. Suppose n m

where n is the number of states in S, and m is the number of states which is contained in the trace-

equivalent minimal ONFSM of I. Under the fault model given in Section 3.2, assuming that the

test suite � is generated for S by using Algorithm 1, we have the following:

 I =trace S iff t��O(I@t) = O(S@t)

 6:38 PM 22/09/2012 Page 17

Proof :

It follows from Lemmas 0 - 4 given in Appendix .

[End of theorem].

3.3. Trace-equivalent transformation to obtain ONFSMs

We now present an algorithm to construct a trace-equivalent ONFSM for an arbitrary (comletely

specified) NFSM which has no internal actions. This algorithm can be used to generate test cases

for the NFSM by using the test generation method described in Section 3.2.

ALGORITHM 2 : Constructing a trace-equivalent ONFSM for a given NFSM .

Input : a NFSM S which does not have any internal action.

Output : an ONFSM S'

Step 1: Build a graph G consisting initially of a single node, labeled { P0 }, where P0 is the initial

state of S (the node {P0} is unmarked initially).

Step 2: If there is no unmarked node in the resulting graph G, stop; G is the ONFSM S' and the

node { P0 } represents the initial state of S'.

Otherwise:

(a) find and mark a unmarked node P in G, where the label P is a set of states of S ;

(b) for every u�L, first construct P'={P' | P � P , P-u-> P'}, then, if P' is not a node label in

the resulting graph G, create a node with label P' and a directed edge from P to P' with label

u; go to Step 2.

[End of algorithm].

For example, the above algorithm constructs the ONFSM shown in Figure 2 from the NFSM in

Figure 1. It is easy to see from the above algorithm that the resulting machine is a completely-

 6:38 PM 22/09/2012 Page 18

specified and observably-nondeterministic . This is, in general, as stated by the following

theorem.

THEOREM 2: For a given NFSM S which does not have any internal action, the S' constructed

by using Algorithm 2 is an ONFSM which is trace-equivalent to S.

Proof:

See Appendix. [End of proof].

We note that the ONFSM obtained through Algorithm 2 is reduced in general. One can easily

develop an algorithm for reducing a given ONFSM to a minimal form, by using an approach

similar to the state minimization for FSMs.

3.4. Trace-equivalent transformation to avoid internal actions

We present in the following an approach to transforming a given NFSM with internal actions to a

trace-equivalent NFSM without internal actions, in order to generate test cases for the given

NFSM by incorporating the test generation method given in Section 3.2 and the transformation

method given in Section 3.3.

For a given NFSM, if the input/output pairs are viewed as labels, the NFSM can be viewed as a

labeled transition system. Then, the transformation method given in [Luo91b] can be applied to

obtain a trace-equivalent NFSM without internal actions.

4. TEST GENERATION FOR A SYSTEM OF CNFSMs

 6:38 PM 22/09/2012 Page 19

We present in this section the application of test generation method given in Section 3 to generate

test cases for a system of CNFSMs. We first present a formal definition for a system of CNFSMs.

We then show that for concurrent software, even if each individual sequential program is modeled

by a deterministic finite state machine, the whole system may be nondeterministic and may not

be able to be modeled by a state machine with a finite number of states. This means that testing

concurrent programs requires to handle the problems related to nondeterminism and state space

explosion. By applying the test generation method given in Section 3 for a single NFSM, we next

present test generation methods based on some reduced global state machines since it is impossible

to construct a trace-equivalent global NFSM to represent a system of CNFSMs. We finally

discuss the detection of faults in queues and channels.

4.1. CNFSMs

Concurrent programs, especially in the area of communication software and communication

protocols, are easily modeled by a system of CNFSMs where the NFSMs communicate with each

other using queues and channels. We assume here that the communication mechanism of a system

of CNFSMs is the same as described in SDL [Beli89]. This means that asynchronuous

communication is assumed. We now define in the following a system of CNFSMs formally.

DEFINITION A system of CNFSMs :

A system of CNFSMs , denoted by com(F1, F2,, Fn), consists of a number of CNFSMs, F1,F2,

......Fn, where:

(1) Every individual CNFSM has an input queue of infinite length. Inputs pass through a queue in

FIFO (first-in and first-out) fashion.

(2) Every pair of CNFSMs, say F1 and F2, has two channels, one for conveying signals (here the

signals are outputs for F1 and inputs for F2) from F1 to F2, the other from F2 to F1. Signals

 6:38 PM 22/09/2012 Page 20

pass through channels in FIFO (first-in and first-out) fashion, then are put into the

corresponding input queue (see Figure 2). Channels can contain an unlimited number of

signals.

(3) Execution time of transitions is arbitrary.

(4) The inputs can remain in a queue for an arbitrary period of time.

(5) The signals can remain in a channel for an arbitrary period of time.

[End of definition].

Figure 4 shows a system of CNFSMs consisting of two CNFSMs.

Inputs from
environment

Inputs from F2

Inputs from F1

F1: A CNFSM

Inputs from
environment

input queue input queue

channel

channel

F2: A CNFSM

Figure 4. A system of two CNFSMs

4.2. State space explosion problem

We show in this section, by the example of Figure 5, that (i) a system of CNFSMs (even if each of

them is deterministic) cannot be modeled, in general, by a trace-equivalent state machine which

 6:38 PM 22/09/2012 Page 21

contains only a finite number of states. (ii) Moreover, a system of CFSMs (even if each of them is

deterministic), may be nondeterministic.

inputs inputs

1

a/e

Figure 5. An example to explain state space explosion

a

e

b, c f

outputs

F1 F2

1

2 3

e/

b/ c/
e/

e/f

c/

b/ c/

b/

Suppose that F1 and F2 have the input queues q1 and q2 respectively, and that c12 is the channel

from F1 to F2 and c21 from F2 to F1. Furthermore, we use a tuple < s1, s2, q1, q2, c12, c21 > to

represent a global state of the system, where s1 and s2 indicate the states of F1 and F2 respectively.

Suppose that we send the input sequence an.b to the system shown in Figure 5; let us examine

what kinds of the sequence of input/output pairs can be observed at the boundary of the system.

Assuming that the system is initially in the state <1, 1, [], [], [], [] > where [] stands for the empty

queue or channel, the following cases may happen after the system receives the sequence an.b

(n=0, 1, 2,):

(1) the system first enters the state <1, 1, [], [en.b], [], [] >, then transfers to the state <1, 2, [],

[], [], [] > without any output.

(2) the system first enters the state <1, 1, [], [b.en], [], [] >, then transfers to the state <1, 2, [],

[], [], [] > generating fn as an output sequence.

(3) other cases vary between the above two extremes.

 6:38 PM 22/09/2012 Page 22

Therefore, the system is nondeterministic. Furthermore, in case (2), we observe the input/output

sequence an.b.fn . Assume that the system is modeled by an trace-equivalent state machine F.

Since the output sequence fn can be produced only after b is received, and since the number of f’s

is also n , the state machine F has to contain at least n states to remember the input sequence an. In

addition , since the number n can be any positive integer, the state machine F must contain an

infinite number of states. Thus we can conclude that a system of CNFSMs, in general, cannot be

modeled by a trace-equivalent global NFSM. Consequently, the test generation method for

NFSMs given in Section 4 cannot be applied to a system of CNFSMs directly.

4.3. Generating test cases by applying the method for single NFSMs

We show in the following how to apply the test generation method for a single NFSM in order to

generate test cases for concurrent programs modeled by a system of CNFSMs. We first use the

reachability analysis to obtain a single NFSM from a system of CNFSMs. We then apply the test

generation method for a single NFSM to the resulting NFSM.

4.3.1. Method based on bounded queues and channels

Since unbounded queues or unbounded channels cannot be implemented in a practical application,

it is reasonable to assume upper bounds for queue lengths and channel lengths. In case of bounded

queues and channels, a system of CNFSMs can be transformed into a trace-equivalent global

NFSM by reachability analysis. After the transformation, the test generation method for NFSMs

given in Section 4 can be applied to the transformed NFSM which models the system of CNFSMs.

However, even if bounded queues and bounded channels are assumed, a trace-equivalent global

NFSM for a given system of CNFSMs still may be very large. Therefore, we impose an

additional constraint on our model.

 6:38 PM 22/09/2012 Page 23

4.3.2. Method assuming a slow environment

For a system of CNFSMs, we say that the system runs in a slow environment if inputs can be

sent from the environment to the system only in situations where all the queues and all the

channels in the system are empty. We say that the system has a live-lock if it is possible for the

system to execute an infinite number of transitions without further inputs. We assume in the

following that the protocol has no livelock. The assumption of a slow environment is, for instance,

satisfied for the protocols with handshake, such as connection and disconnection phases in the

transport protocol .

For a given system of CNFSMs com(F1, F2,......, Fn), consisting of n NFSMs named F1, F2,......,

Fn, if the system contains no live-lock and runs only in a slow environment, then the system can

be modeled by a trace-equivalent global NFSM with M16M26,... ...,6Mn state where M1,M2,

Mn are the numbers of states in F1, F2,......, Fn, respectively. For such a system of CNFSMs, the

trace-equivalent global NFSM can be obtained by using the reachability analysis.

Figure 6 gives an example of a system of two CNFSMs without live-lock. Figure 7 shows the

trace-equivalent global NFSM of the system obtained by using the reachability analysis.

 6:38 PM 22/09/2012 Page 24

S1

S2 S3

b/

a/a/

b/e
a/d

a/ea/d

b/e

S1

S2 S3

c/

e/

e/f

e/g

c/f
c/

Figure 6. An example of a system of two CNFSMs

outputsinputs outputsinputs

a, b d c f, g

e

1, 1

2, 1

3, 1

3, 3

1, 2

2, 2

3, 2

1, 3

2, 3

b/

a/d
a/d a/g

c/
b/ c/

a/d a/d
a/f

a/d

a/d

a/c/f

b/

a/

c/
b/g

a/

c/

b/f

c/

b/f

a/

b/g

a/

c/

a/
c/f

b/

c/f b/

a/

Figure 7. The global NFSM generated by using reachability analysis

 6:38 PM 22/09/2012 Page 25

After the global NFSM has been obtained from a given system of CNFSMs, we apply the test

generation method given in Section 3 to the global NFSM, to generate test suite.

4.4. Detecting faults of queues and channels

We first define in this section an additional fault model concerning queues and channels, and then

present a test selection framework which takes these fault types into account. Similar to SDL

semantics, we assume unbounded queues (and channels) in the specifications modeled by

CNFSMs. The implementation model, however, has to limit the size of each queue (and channel)

to a prescribed "maximum length" [Boch91] since no unbounded queue (nor channel) can be

implemented in practical applications. We therefore consider the following additional fault types.

Let the specification be a system of CNFSMs com(F1, F2,......, Fn), and the implementation a

system of CNFSMs com(F1’, F2’,......, Fn’) with the same interconnection structure. We also

assume the following: for a queue (channel) of length M, when the queue (channel) already

contains n inputs, if an input is put into the queue (channel), then it will be lost.

The additional fault types are defined as follows:

(1) Maximum length fault of queue : We say that the queue in Fi’ (i = 1, 2,,n) has a

maximum length fault if the maximum length implemented is less than the one specified in Fi.

(2) Maximum length fault of channel : We say that a channel from Fi’ to Fj’ (i ,j = 1, 2,,n;

and j�i) has a maximum length fault if the maximum length implemented is less than the one

specified for the channel from Fi to Fj.

(3) Ordering fault : We say that a queue (channel) has an ordering fault if the FIFO ordering is

not preserved [Boch91].

 6:38 PM 22/09/2012 Page 26

Further study is needed for an systematic procedure to describe how to find the test cases step by

step. However, one usually has no difficulty to find the test cases by using intuition and heuristic

approaches. For example, guided by the fault model, in order to detect the maximum length faults

of queues and channels, we find test cases in the following manner:

Fault model guided test selection:

Given a system of CNFSMs com(F1, F2,......, Fn), for every queue and every channel, generate a

test case t (i.e. an I/O sequence of inputs and outputs) for the queue (or channel) such that :

(a) O(com(F1, F2,......, Fn)@t) = T and

(b) O(com(F1’, F2’,......, Fn’)@t) = F if the corresponding maximum queue length (or

maximum channel length) in the implementation is less than the one specified and if no

other fault exists in com(F1’, F2’,......, Fn’).

[End].

For the example shown in Figure 5, assuming that the maximum length of channel c12 is 4 in the

specification, by using the above procedure, a test case t = a4.b.f4 is generated. Following the

arguments given in Section 4.2, the reader may check O(com(F1’, F2’)@t) = F easily if the

maximum length of channel c12 is less than 4 in the implementation com(F1’, F2’). This means

that if the implementation com(F1’, F2’) is correct, it will produce the output sequence f4 after

receiving a4.b sometime if a4.b is sent to com(F1’, F2’) in the state <1, 1, [], [], [], [] > infinitely

often. On the other hand, if the maximum length of channel c12 in the implementation com(F1’,

F2’) is less than 4, it cannot produce the output sequence f4 after receiving a4.b sometime even if

a4.b is sent to com(F1’, F2’) in the state <1, 1, [], [], [], [] > infinitely often, as shown in Figure 8.

 6:38 PM 22/09/2012 Page 27

e e e

F1

e

F2

a
a
a
a

b
f
f
f

Figure 8. Detecting a channel fault.

e is lost because of the length of the
 faulty queue c12 is 3, instead of 4

Further study is needed for detecting the above ordering fault.

5. CONCLUSION

We present in this paper a method of generating test cases for concurrent programs from a system

of CNFSMs. This method can be applied to test generation for the control part of SDL processes.

In order to apply this method, SDL processes are first abstracted to a system of CNFSMs by

neglecting the parameters and by the transformation to avoid the SAVE constructs [Luo91]. The

test generation method are then applied to the system of the resulting CNFSMs. Further study may

find a better solution to the state space explosion problem. The test generation method may also

be useful in the area of VLSI circuit testing [Cern92] since some VLSI circuits can be viewed as

NFSMs.

APPENDIX: VALIDITY OF TEST METHOD

We first introduce several definitions, then we give several lemmas which are required for proving

the theorem of test generation.

 6:38 PM 22/09/2012 Page 28

DEFINITION : Grouping function h :

For a given NFSM I, suppose that (i) Im is the trace-equivalent minimal ONFSM of I, (ii) St and

Stm are the state sets of I and Im respectively. Then,

 grouping function h of I : Stm -> powerset(St) is defined as follows:

 h(s)={ g�St | x �L*, Im=x=>s, I=x=>g }

[End of definition].

DEFINITION : Multistates, prime multistate set :

For a given NFSM I, suppose that (i) Im is the trace-equivalent minimal ONFSM of I, (ii) St and

Stm are the state sets of I and Im respectively. , and (iii) h is the grouping function of I. Then, a

multistate is a set of states in St; and a prime multistate set of I is defined as follows:

 ={ h(s) | s �St}

[End of definition].

It is easy to see that the grouping function h, from Stm to , is one-one and onto.

DEFINITION : Prime machine :

For a given NFSM I, suppose that (i) the prime multistate set is . Then, a prime machine of I is

a graph such that (i) the number of its nodes is | | , (ii) each node in it is labeled by a multistate

in , and (iii) For each pair of multistates Mi and Mj in , there is a directed edge labeled u from

Mi to Mj if and only if gi� Mi, gj� Mj, u �L* such that gi=u=>gj in the given I.

[End of definition].

According the above definition, a prime machine is just a graph, not a NFSM. However, for a

given NFSM I, if its prime machine is viewed as the graphic representation of a NFSM F, then the

F is the trace-equivalent minimal ONFSM of I.

 6:38 PM 22/09/2012 Page 29

 Table 3. Notation for some relations between multistates

 notation meaning

 Mi~u-> Mj gi� Mi, gj� Mj, u �L* such that gi=u=>gj in the given I

 Mi~u-> there exists a Mj such that Mi~u-> Mj

 Mi~u1...un-> Mj gi� Mi, gj� Mj, uk �L* (k= 1,2,,n)

 such that gi=u1...un=>gj in the given I

 Mi~u1...un-> there exists a Mj such that Mi~u1...un-> Mj

Note that M1~u1-> M2 and M2~u2-> M3 together imply M1~u1.u2-> M3 in a prime machine.

We extend the observation of test runs to include the situation for multistates

DEFINITION Observation of test runs for multistates :

For a given NFSM, Observation of test runs is a function O:

 (St  powerset(St)) test cases --> {T, F} such that :

(i) for P � St

 O(P@t) = T iff P=t => ; otherwise, (P@t) = F.

(ii) for M �powerset(St),

 O(M@t) = T iff P� M such that P=t =>; otherwise, (M@t) = F.

[End of definition].

DEFINITION : V-equivalent for states and multistates :

For a given NFSM, let Qi and Qj, each be either a state or a multistate. V is a test suite. Qi is

said to be V-equivalent to Qj if t�V,O(Qi@t) = O(Qj@t) . Otherwise, Qi and Qj are said to

be V-distinguishable.

 6:38 PM 22/09/2012 Page 30

[End of definition].

We extend in the following the trace-equivalence relation to include the situation for multistates.

DEFINITION : Trace-equivalent for states and multistates :

For a given NFSM, let Qi and Qj, each be either a state or a multistate. Qi is said to be trace-

equivalent to Qj if t�L*,O(Qi@t) = O(Qj@t) . Otherwise, Qi and Qj are said to be trace-

distinguishable.

[End of definition].

DEFINITION : Isomorphism between two ONFSMs :

For a pair of given ONFSMs I and S, an isomorphism from I to S is a function which maps

states in S to states in I, such that : a)  is one-one and onto, b) if Si-u-> Sj is in S, then (Si)-u->

(Sj) is in I, and c) if (Si)-u-> (Sj) is in I, then Si-u-> Sj is in S. Furthermore, S is said to be

isomorphic to I if there exists an isomorphism between them.

[End of definition].

For a given NFSM I, if its prime machine is viewed as the graphic representation of a NFSM F,

then the F is isomorphic to the trace-equivalent minimal ONFSM of I.

Please notice that the b) in the above definition, in general, does not imply c), while it does when

the given ONFSMs are FSMs.

LEMMA 0: For two minimal ONFSMs I and S, I is trace-equivalent to S iff I and S are

isomorphic with the root of I corresponding to the root of S. For a minimal ONFSM S and a

NFSM I, with Im being the trace-equivalent minimal ONFSM of I, I is trace-equivalent to S iff

Im and S are isomorphic with the root of Im corresponding to the root of S.

 6:38 PM 22/09/2012 Page 31

We omit the proof for the above lemma since it is straightforward.

We assume in the following:

(1) S is a minimal ONFSM and I is a NFSM. S and I have the same input and output alphabets Li

and Lo.

(2) S has n states with n ≥ 2.

(3) Im is the trace-equivalent minimal ONFSM of I, and Im may have at most m states with m ≥ n.

(4) W is a characterization set, and Z = ({} L  L2  Lm-nW.

(5) P is a set of test cases such that : for each transition Si -u-> Sj in S, with S0 being the root of

the ONFSM,

x.u � P such that there exists a path from S0 to Si in S with x being the sequence of

labels of the edges along this path.

(6) is the prime multistate set of I, M0 is the root label of the prime machine of I.

(7) StS, StI and Stm are the state sets of S, I and Im respectively.

(8) h is the grouping function of I.

LEMMA 1: Trace-equivalence is an one-one and onto function from Im to ; and for every pair

of Mi and Mj (i�j) in , Mi is not trace-equivalent to Mj .

Proof:

Evident from the corresponding definitions.

[End of proof].

LEMMA 2: Suppose that W-equivalence partitions the states in into at least n classes. Z will

distinguish every pair of states in .

Proof:

 6:38 PM 22/09/2012 Page 32

Induction hypothesis : ({} L  L2  LiW-equivalence partitions states in into at

least i+n classes for i=0,...,m-n.

Induction base : i=0, it is true by the hypothesis of the lemma.

 Induction step : Assume induction hypothesis true for i 0. We show that it holds for i+1. If

({} L  L2  LiW-equivalence has already partitioned states in into at least i+1+n

classes, then it is obviously true. Otherwise, from Lemma 1, there must be a pair of multistates in

, Mi and Mj, such that Mi and Mj are LkW-distinguishable but ({} L  L2  Lk-1W-

equivalent, for some k ≥ i. This implies that there must be a pair of states Mi' and Mj' such that Mi'

and Mj' the (k-i-1)th successors of Mi and Mj , and Mi' and Mj' are Li+1W-distinguishable, but

({} L  L2  LiW-equivalent. Therefore, ({} L  L2  Li+1W partitions the

states in into i+1+n classes. By induction, we have the lemma.

[End of proof].

In the following, we use · to denote the composition of functions; i.e., h·f(x) means h(f(x)). For

one-one and onto function, we also use h-1 to denote the inverse function of h; i.e., h-1(y)=x means

y=h(x).

LEMMA 3: S is isomorphic to Im iff Z-equivalence satisfies the following statements :

(1) for every state Si � StS, there is a multistate Mi � such that Mi is Z-equivalent to Si. In

particular, M0 is Z-equivalent to S0.

(2) if Si-u-> Sj, then there are Mk and Ml in such that Mk and Ml are Z-equivalent to Si and Sj,

respectively, and Mk~u-> Ml .

(3) if  Mk , Ml � such that Mk~u-> Ml, then there are Si and Sj,such that Mk and Ml are Z-

equivalent to Si and Sj, respectively, and Si-u-> Sj .

Proof:

(==>) : Assume that S is isomorphic to Im and that the isomorphism is denoted by f. Then, for

every Si � StS, we have that Si, f(Si), and h·f(Si) are trace-equivalent since S is isomorphic to Im.

 6:38 PM 22/09/2012 Page 33

Therefore, Si, f(Si), and h·f(Si) are Z-equivalent. Since Z-equivalence can distinguish every pair

of states in StS, it is easy to see that Z-equivalence satisfies the above statements (1)-(3) .

(<==) : Assume that Z-equivalence satisfies the above statements.

(I) To show that Z-equivalence is a function from StS to , and is one-one and onto:

 We first argue that Z-equivalence is a function. Because of (1), and W ⁄ Z, for every Si � StS,

there is a multistate Mi � such that Mi is Z-equivalent to Si. Since S has n states, from the

definition of W, it follows that W-equivalence has partitioned the multistates of into at least n

classes. By Lemma 2, Z-equivalence will distinguish every pair of states in . Therefore, there

must be at most one state in which is equivalent to a state in StS.

 From the definition of W and W ⁄ Z, Z-equivalence is one-one. It also is easy to see that the

mapping is onto, because I has the same input set as S. Hence, according (2), every reachable

multistate in is Z-equivalent to some state in StS.

(II) To show that S is isomorphic to Im:

Let  denote the Z-equivalence; i.e.,  is a function from StS to , and is one-one and onto. h-1,

the inverse function of the grouping function h, from to Stm is one-one and onto. Therefore,

·h-1 is a function from StS to Stm ; and it also is one-one and onto. Then, from (2) and (3), it is

easy to see that ·h-1 is an isomorphism from S to Im.

[End of proof].

LEMMA 4: Z-equivalence satisfies the following three statements, iff I and S are (P P.L).Z-

equivalent.

(1) for every state Si � StS, there is a multistate Mi � such that Mi is Z-equivalent to Si. In

particular, M0 is Z-equivalent to S0.

(2) if Si-u-> Sj, then there are Mk and Ml in such that Mk and Ml are Z-equivalent to Si and Sj,

respectively, and Mk~u-> Ml .

(3) if  Mk , Ml � such that Mk~u-> Ml, then there are Si and Sj,such that Mk and Ml are Z-

equivalent to Si and Sj, respectively, and Si-u-> Sj .

 6:38 PM 22/09/2012 Page 34

Proof:

(==>) : Assume that Z-equivalence satisfies the following three statements. From Lemma 3, S is

isomorphic to Im . Hence, it is easy to see that I and S are (P P.L).Z-equivalent.

(<==) : Assume that I and S are (P P.L).Z-equivalent.

(I) For every Si � StS, there is a x � P such that S0-x->Si . Let Mj be the multistate reached by x

in I. Since we cannot distinguish S and I with respect to x.Z, Si must be Z-equivalent to Mj.

(II) If Si-u-> Sj, there is a x �P such that S0-x-> Si. We also have x.u �P such that S0-x.u-> Sj.

Let Mk and Ml denote the multistates reached by x, x.u in I. Since we cannot distinguish S and

I with respect to x.Z and x.u.Z, Si and Sj are Z-equivalent to Mk and Ml , respectively, with

Mk~u-> Ml.

(III) From the above (I) and (II), and from the " if part (I)" of the proof of Lemma 3, Z-

equivalence is a function from StS to , and is one-one and onto. Then, for every Mk � ,

there must be a Si � StS which is Z-equivalent to Mk , there must be a x � P such that S0-x-> Si ;

hence, we have M0~x-> Mk since we cannot distinguish S and I with respect to x.Z. This

means that for every Mk � , there a x � P such that M0~x-> Mk. For every Mk~u-> Ml, we

have x � P such that M0~x-> Mk, and x.u �P.L (Here please notice that x.u is not necessarily

in P). Let Si and Sj � StS denote the states reached by x, x.u in S. Then, we have Si-u-> Sj .

Since we cannot distinguish S and I with respect to x.Z and x.u.Z, Si and Sj are Z-equivalent to

Mk and Ml , respectively.

[End of proof].

THEOREM 2: For a given NFSM S which does not have any internal action, the S' constructed

by using Algorithm 2 is an ONFSM which is trace-equivalent to S.

Proof:

It is easy to see from the above algorithm that the resulting machine is completely-specified and

observably-nondeterministic .

Suppose that S is a given NFSM and S’ the ONFSM obtained by applying Algorithm 1.

 6:38 PM 22/09/2012 Page 35

 Let x=a1/b1.a2/b2.......an/bn � L*,

 and S-a1/b1->S1-a2/b2->S2.......-an/bn->Sn (1)

From (1) and Algorithm 1 Step 2(a) and (b), there exist S’1, S’2,, S’n such that

 S’-a1/b1->S’1-a2/b2->S’2.......-an/bn->S’n (2)

Similar to the above arguments, S’=x=> implies S=x=> (3)

The theorem holds because of (2) and (3).

[End of proof].

Acknowledgments: The authors would like to thank Prof. Rachida Dssouli, Prof. Alexandr

Petrenko who read the draft and gave us useful comments, and Mr. C. Wu, Mr E.H.Htite, Mr. M.

Yao and Mr. A.Ghedamsi for helpful discussions and comments.

REFERENCES:

[Arak91] Noriyasu Arakawa, Terunao Soncoka, "A test Case Generation Method for Concurrent Programs",

Proceedings of International Workshop on Protocol Testing Systems, Oct. 15-17th, 1991, the Netherlands.
[Boch91] G.v. Bochmann, A. Das, R. Dssouli, M.Dubuc, A.Ghedamsi, and G.Luo, "Fault Model in Testing",

Proceedings of International Workshop on Protocol Testing Systems, Oct. 15-17th, 1991, the Netherlands.
[Beli89] F. Belina and D. Hogrefe, "The CCITT-Specification and Description Language SDL", Computer Networks

and ISDN Systems, Vol. 16, pp.311-341, 1989.
[Bolo87] T. Bolognesi and E. Brinksma, "Introduction to the ISO Specification Language Lotos", Computer Networks

and ISDN Systems, vol. 14, no. 1, pp.25-59, 1987.
[Brin88] Ed Binsksma, "A Theory for the Derivation of Tests", IFIP Protocol Specification, Testing, and Verification

VIII.
[Brin89] Ed Brinksma, Rudie Alderden, Rom Langerak, Jeroen van de Lagemaat and Jan Tretmans, "A Formal

Approach to Conformance Testing", 2nd International Workshop on Protocol Test System", Berlin(West),
Germany, Oct. 3-6, 1989, pp.311-325.

[Budk87] S. Budkowski and P. Dembinski, "An introduction to Estelle: a specification language for distributed
systems", Computer Networks and ISDN Systems, vol. 14, no. 1, pp.3-23, 1987.

[Chow78] T.S.Chow, "Testing Software Design Modeled by Finite-State Machines, IEEE Trans. on Software Eng.,
Vol. SE-4, No.3, 1978.

[Cern92] E. Cerny, "Verification of I/O Trace Set Inclusion for a Class of Nondeterministic Finite State Machines",
Internal Report, D.I.R.O, University of Montreal, 1992.

[Fuji91] Susumu Fujiwara and Gregor von Bochmann, "Testing Nondeterministic Finite State Machine",
Publication#758 of D.I.R.O, University of Montreal, January 1991.

[Fuji91b] Susumu Fujiwara and Gregor von Bochmann, "Testing Nondeterministic Finite State Machine with Fault
Coverage", 4th International Workshop on Protocol Testing Systems, Oct. 1991, Leidschendam, Netherlands.

[Fuji91c] S.Fujiwara, Gregor von Bochmann,F.Khendek,M.Amalou & A.Ghedamsi, "Test Selection Based on Finite
State Models", IEEE Trans. on Software Engineering, Vol SE-17, No.6, June, 1991, pp.591-603.

[Kaln91] A. Kalnins, "Global State Based Automatic Test Generation for SDL", SDL’91: Evolving Methods
(Proceedings of 5th SDL Forum), North-Holland, 1991, pp.303--312.

 6:38 PM 22/09/2012 Page 36

[Luo89]. Gang Luo & Junliang Chen , "Generating Test Sequences For Communication Protocol Modeled by
CNFSM", Proc. of the 3rd Pan Pacific Computer Conference, Aug. 16- 19, 1989, Beijing, China.

[Luo89b]. Gang Luo & Junliang Chen, "Test Design for SDL Described Concurrent Communication Software",
International Conference on Communication Techniques'89, Beijing, China.

[Luo91] Gang Luo, Anindya DAS, and Gregor von Bochmann, "Test Selection Based on SDL specification with
Save", SDL’91: Evolving Methods (Proceedings of 5th SDL Forum), North-Holland, 1991, pp.313--324.

[Luo91b] Gang Luo, Gregor von Bochmann, Anindya Das, and Cheng Wu, "Failure-Equivalent Transformation of
Transition System to Avoid Internal Actions", Publication#789 of D.I.R.O, University of Montreal, September
1991.

[Sabn85] K.Sabnani & A.T.Dahbura, "A New Technique for Generating Protocol Tests", ACM Computer
Communication Review, Vol.15, No.4, 1985, pp.36-43.

[SDL91] SDL newsletter, Dec. 1991.
[Star72] P.H. Starke, Abstract Automata, North-Holland/American Elsevier, 1972, 419p.
[Tret89] Jan Tretmans, "Test Case Derivation from LOTOS Specifications", Forte'89, pp.469-488.
[Wu91] C. Wu, G.v. Bochmann and M. Yao, Fairness of N-Party Synchronization and Its Implementation in a

Distributed Environment, Submitted to Distributed Computing Systems Conf. 92 in Japan.

